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ABSTRACT

A comparison was made between two approaches to predict acoustic emission waveforms in

thin plates.  A normal mode solution method for Mindlin plate theory was used to predict

the response of the flexural plate mode to a point source, step-function load, applied on the

plate surface.  The second approach used a dynamic finite element method to model the

problem using equations of motion based on exact linear elasticity.  Calculations were made

using properties for both isotropic (aluminum) and anisotropic (unidirectional

graphite/epoxy composite) materials.  For simulations of anisotropic plates, propagation

along multiple directions was evaluated.  In general, agreement between the two theoretical

approaches was good.  Discrepancies in the waveforms at longer times were caused by

differences in reflections from the lateral plate boundaries.  These differences resulted from

the fact that the two methods used different boundary conditions.  At shorter times in the

signals, before reflections, the slight discrepancies in the waveforms were attributed to
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limitations of Mindlin plate theory, which is an approximate plate theory.  The advantages of

the finite element method are that it used the exact linear elasticity solutions, and that it can

be used to model real source conditions and complicated, finite specimen geometries as well

as thick plates.  These advantages come at a cost of increased computational difficulty,

requiring lengthy calculations on workstations or supercomputers.  The Mindlin plat theory

solutions, meanwhile, can be quickly generated on personal computers.  Specimens with

finite geometry can also be modeled.  However, only limited simple geometries such as

circular or rectangular plates can easily be accommodated with the normal mode solution

technique.  Likewise, very limited source configurations can be modeled and plate theory is

applicable only to thin plates.
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INTRODUCTION

The ability to accurately model acoustic emission (AE) waveforms offers significant

potential for improving the interpretation of AE data.  Applications of such models include

the determination of optimal placement of sensors in an AE test, the scaling of AE results

from laboratory coupons to structures of practical interest, the calibration of transducers,

and insight into inversion of AE data to eliminate extraneous noise and identify source

mechanisms.  However, in much of the early work (1-4) on modeling AE waveforms,

approaches introduced in seismology have been applied to model the propagation of bulk

and surface waves.  Such models could be used to predict waveforms only in an infinite

half-space, or in a plate of infinite lateral extent. In the plate geometry, the results were valid

only for short propagation distances of less than ten plate thicknesses.

The geometries of many practical structures of interest for AE monitoring, though, are

neither infinite in lateral extent, nor composed of thick plates or large components where
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propagation of bulk waves is dominant.  Thin plates, pipes, shells, rods, and beams are

common.  In such geometries, the distance from the receiver to the AE source is often many

times the specimen thickness and the wave propagation is dominated by guided modes.

Much experimental effort recently (5-10) has focused on guided wave propagation effects in

the interpretation of AE signals.  This research has led to improved accuracy in the locating

the sources of emission, to the ability to better discriminate and eliminate extraneous noise

signals, and to enhanced identification of AE sources.

Following this trend, recent theoretical efforts to model AE waveforms have also considered

guided wave propagation.  Integral transform techniques have been used to predict the Lamb

wave response for AE sources in anisotropic composite materials (11-12).  Solutions were

obtained for both exact elasticity theory and approximate laminated plate theory, and were

shown to be in agreement with experimental observations.  However, a limitation of this

theoretical approach is that it again assumes a geometry of an infinite plate thus ignoring

reflections from plate edges.  A normal mode solution technique for classical plate theory

has also been used to provide solutions for the flexural plate mode (lowest order

antisymmetric Lamb mode) in plates with finite geometries (13).  Results for predictions of

the flexural plate mode in an isotropic material were shown to agree with experimental

observations of simulated AE signals for very low frequencies where this theory is valid.

The extension of this solution technique to Mindlin plate theory (MPT) (14) which more

accurately predicts the flexural plate mode at higher frequencies, is considered in this paper.

Such an approach was also recently used for the prediction of flexural plate mode AE

waveforms in isotropic plates and shown to be in agreement with experimental

measurements of simulated AE signals (15).  In that work, solutions were also developed for

the Mindlin-Medick plate theory to predict the extensional mode in isotropic plates as well.

However, comparisons with exact linear elasticity solutions did not provide as good an

agreement.  A dynamic finite element method (DFEM) has been developed for predicting
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AE waveforms in the far field in plates (16-17).  This approach also allows the consideration of

plates of finite lateral extent.  Theoretical predictions from this method were shown to be in

good agreement with experimental measurements of signals generated by a simulated AE

source.

In this research, theoretical predictions were compared from both DFEM and MPT for the

flexural plate mode component of a simulated AE signal.  Calculations were made with both

isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy) material properties.

For the anisotropic material, several different directions of propagation were considered.

The DFEM has a number of advantages in that it is based on exact linear elasticity theory

and can be used for both isotropic and anisotropic media.  Additionally, the method has the

potential to model realistic structural geometries to include propagation effects such as

signal reflections.  Realistic source geometries such as buried dipole sources can also be

modeled.  However, the DFEM calculations are computationally intensive requiring both

significant memory and processor time.  Currently, they can be made only on workstation

or higher-class machines, and models take many hours or days to complete.  The normal

mode solutions to MPT are much less computationally demanding.  They can be made on

personal computers within minutes.  Although both isotropic and anisotropic materials, as

well as finite geometries, can be modeled, source configurations and specimen geometries

which can be considered are limited.  Also, MPT is an approximate theory and useful only

for predicting the flexural mode response.  Other plate theories, such as the Mindlin-

Medick plate theory can predict the extensional mode, but typically do not provide as good

an agreement with experimental measurements or predictions based on exact elasticity (15).

MINDLIN PLATE THEORY
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Mindlin (14) improved on classical plate theory for isotropic media by including the effects

of shear deformation and rotatory inertia.  This approach was later extended to anisotropic

laminated composites (18) and used to predict flexural mode dispersion (19) in composites.

The normal mode solution technique of MPT used in this research was developed for

predicting the response of an orthotropic laminated plate to an impact (20).  However, waves

propagating away from the impact site were not considered in that work, as solutions were

examined for the displacement only at the position of impact.  More recently, the normal

mode solution for MPT was used to model AE waveforms (15).    However, results only for

isotropic materials were presented.

As the derivations of MPT and the normal mode solution approach are available in the

references mentioned above, they are not repeated in detail here.  A specially orthotropic

composite laminate, which is a symmetric laminate with plies in the 0 and/or 90 degree

directions only, is assumed with the z axis normal to the plate.  The normal mode solution

for the z axis displacement (w) is presented.  The plate was assumed to be rectangular with a

thickness (h), length (a) along the x axis, and width (b) along the y axis.  Simply supported

boundary conditions were assumed along the plate edges.  The material properties were the

density (ρ), the classical laminated plate bending stiffness coefficients (D11 , D12 , D22 , and

D66), and shear correction bending stiffnesses (A44  and A55).  A step function point load of

amplitude P was assumed to occur on the plate surface at x = ξ,        y = ζ, and time, t = 0.

The resulting displacement (w) at any point (x,y) as a function of time is then given by

w(x, y, t) = 4P
hab m=1

∞

∑
n=1

∞

∑ sin n x sin m y sin n sin m (1 − cos nmt)

nm
2  ,    (1)

where

n = n
a

 , m = m
b

,                                                  (2)
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and

nm
2 = nm

2

(1+ nm
2

Enm
2

)

      .                                                   (3)

In Equation (3),

nm
2 =

D11 n
4 + D22 m

4 + 2(D12 + 2D66 ) n
2

m
2

h
  ,                                (4)

and

Enm
2 =

A44 m
2 + A55 n

2

h
   .                                                    (5)

The term βnm represents the frequency for the given normal mode.  An approximate solution

is obtained by calculating the summations up to given values of n and m.  The resulting

waveform then contains frequencies only up to the value of βnm  for these maximum values.

For all calculations in this work, a total of n = m = 200 normal modes were summed.

For an isotropic material, the following relationships hold between the plate stiffness

coefficients and the Young’s modulus (E), Poisson’s ratio (ν), and the shear modulus (G):

D11 = D22 = D = Eh3

12(1− 2 )
  ,                                                (6)

D12 = D = Eh 3

12(1− 2 )
   ,                                                      (7)

D66 = (1 − )
2

D = (1 − )Eh 3

24(1− 2 )
    ,                                               (8)

and
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A44 = A55 = k2 Gh    ,                                                          (9)

where

G = E
2(1+ )

   .                                                                  (10)

and κ is the shear correction coefficient.  A value of 5/6 for κ2 has been derived for

materials which are homogeneous through the thickness of the plate (20).  This was the case

for both the aluminum and the unidirectional graphite/epoxy modeled in this work.

DYNAMIC FINITE ELEMENT METHOD

The DFEM used in this research has been reported elsewhere (16,17) and the details are not

repeated here.  Both a two-dimensional, cylindrically symmetric model (16), which is useful

for isotropic materials, and a three-dimensional model (17), which can handle anisotropic

media, have been developed.  The results from both models have been compared with

experimental waveforms generated by simulated sources (pencil lead fractures) on a plate

surface and acquired with an absolutely calibrated sensor.  Model predictions and

experimental measurements were in excellent agreement for isotropic materials.  Because of

the lower complexity and memory requirements of the two-dimensional approach, models

can be run with either decreased cell size (increased spatial resolution) or much shorter

calculation times.  However, in addition to modeling anisotropic media, the three-

dimensional approach is required to model realistic specimen geometries (other than a

round plate with the source at the center) as well as realistic sources such as a non-

axisymmetric buried dipole.

In both cases a leapfrog approximation in time and linear elements in space is used.  Stress

free boundary conditions are assumed along the top and bottom surfaces as well as along

the outer edges of the plate.  To model a step function in the DFEM, a linear ramp with rise
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time smaller than the time step can be used.  However, such a fast rise time can produce

numerical transients in the calculated signal.  For these calculations, the time step was

approximately 0.02 µs while the rise time of the linear ramp source was 0.1 µs  The effect

of this rise time was evaluated by increasing it up to several microseconds in otherwise

identical model calculations.  For rise times of less than 1 µs, no differences were observed

in the calculated flexural waveforms, which suggested that the linear ramp source with rise

times over this range converged to a step function source for this mode.  Likewise, the point

source used in the plate theory calculations could not be modeled by the DFEM.  The

previous work has shown that the source diameter must be at least four time the cell

dimension for sources with fast rise times to avoid introducing high frequency numerical

transients.  For all of these calculations, this minimum source size was used.  For the high

spatial resolution used in the two-dimensional model, this source diameter was quite small

and approximated a point source well.  As with the source rise time, the effect of the source

diameter on the model results were evaluated by increasing the diameter up to several times

the minimum value.  Again, no effect was observed on the calculated waveforms.  Because

of the limited spatial resolution of the three-dimensional model, the minimum source

diameter was larger.  However, good agreement with the plate theory calculations was still

observed.

 ISOTROPIC MATERIAL (ALUMINUM)

The material properties for aluminum were used for both MPT and DFEM calculations.

The density was assumed to be 2770 kg/m3, Young’s modulus to be 73.0 GPa, and

Poisson’s ratio to be 0.3.  The plate thickness was taken as 3.175 mm.  For MPT, a

rectangular plate geometry was modeled with a length along x of 0.508 m and width along y

of 0.381 m.  The source was positioned at x = 0.254 m, y = 0.127 m.  Five different receiver
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positions were modeled, all along the x = 0.254 m line, at positions ranging from y = 0.2032

m to 0.3048 m at intervals of 2.54 cm.  Thus, the distance from the source to the receiver

varied from 7.62 cm to 17.78 cm (24 to 56 plate thicknesses).  For the two-dimensional

DFEM calculations, the radius was assumed to be 0.254 m, with the source positioned at the

center of the plate (r = 0).  The cell size, which was uniform in r and z, was 0.079 mm

which provided 40 elements through the thickness.  Again, five receivers were modeled at

positions ranging from 7.62 cm to 17.78 cm in 2.54 cm intervals.  So that only the

asymmetric Lamb modes could be obtained from the DFEM results, simulated point

receivers were placed both on top and bottom of the plate in the model.  Then, by adding the

signals from the top and bottom for a given location and dividing by two, the symmetric

Lamb mode components were eliminated leaving only the asymmetric components.  For

both model calculations, the amplitude of the monopole source force function was assumed

to be 1 N.

In Fig. 1, the model waveforms from both methods at propagation distances of 7.62, 12.7,

and 17.78 cm are compared over a full 150 µs time scale.  Overall, the agreement between

the two methods is good.  At longer times, there is some discrepancy between the signals,

which was attributed to the effect of differences in reflections from plate edges.  As the plate

geometries and boundary conditions are different for the two methods, agreement in the

prediction of reflected signals is not expected.  The significant dispersion of this mode is

observed when looking at the changes in the signal shape at different distances of

propagation.  Fig. 2 shows the same signals but at expanded time scales for the early arrival

portion of the signals.  More discrepancy between the two methods is observed for the

higher frequencies in the early arrival.  There are several possible explanations for these

differences.  The first could be the difference in the input force function between the step

function used for MPT and the fast rise time linear ramp used for DFEM.  However, the

effect of varying the rise time was investigated and it is not believed that this is a significant
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contribution to the differences.  Another explanation could be the difference between the

source diameter from the point source assumed in the plate theory model and the finite, but

small, source used for the finite element calculations.  Again, this was evaluated with the

DFEM by varying the source diameter, with no significant changes observed.  The final and

most likely cause of the discrepancies is due to the approximate nature of MPT.  Since the

DFEM is based on exact linear elasticity and has been confirmed by comparison with

experimental measurements, it is assumed that the differences observed are due to

limitations of MPT.

ANISOTROPIC MATERIAL (GRAPHITE/EPOXY)

The composite material modeled was assumed to be a unidirectional material of thickness

2.54 mm.  The elastic properties were assumed to be those of AS4/3502 graphite/epoxy.

The axes were designated such that the x axis was along the fibers, the y axis was normal to

the fibers in the plane of the plate, and the z axis was perpendicular to the plane of the plate.

As a unidirectional material, the material was assumed to be transversely isotropic (nine

nonzero elastic stiffness moduli, five of which are independent).  The values of these

coefficients, which were used in the DFEM calculations, are given in Table I.  The

coefficients used in the MPT calculations, which were calculated from the elastic properties

in Table I, are shown in Table II.

Calculations were made for propagation along the fiber direction (0°), perpendicular to the

fibers (90°), and at 45°.  The three-dimensional DFEM model was used to include effects

of anisotropy.  This allowed the lateral geometry of a rectangular plate to be used for the

DFEM and MPT models.  However, it is noted that the boundary conditions along the

edges were still different (stress free for finite element method and simply supported for

plate theory).  Thus, agreement at long times where significant reflection components are

contained in the signals is not expected.  Also, although the lateral plate dimensions were the
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same for a given MPT and DFEM calculations for a particular propagation direction, they

were not the same for all directions.  This was because of the much larger memory

requirements of the three-dimensional finite element method which placed limitations on the

dimensions of the plate.  For each direction, lateral dimensions, source location, and receiver

positions were chosen to minimize the effects of reflections from the edges.  For the

0° propagation direction, a, the lateral dimension along x was 0.254 m while b, the lateral

dimension along y was 0.1524 m.  For 90°, a was 0.1524 m and b was 0.254 m, and for

45°, a and b were both 0.2286 m.  For all propagation directions, the distance from the

source to receiver was varied from 7.62 to 15.24 cm (30 to 60 plate thicknesses) at intervals

of 2.54 cm.  However, results are shown only for a maximum propagation distance of 12.7

cm as the effect of reflections from the plate edges caused significant discrepancies at a

distance of 15.24 cm.  Again for the DFEM, the simulated point receivers were modeled

both on top and bottom of the plate to allow elimination of the symmetric mode components

in the signals.

For the DFEM, only ten elements were used through the thickness for a cell size of 0.254

mm.  The cell aspect ratio was unity.  This larger cell size was adequate for these

calculations because of the low frequencies (and thus long wavelengths) in the flexural

mode signals.  However, because of the larger element size, there was a correspondingly

larger source diameter which could have a minimum value of only four times the cell size.  It

is possible that this larger source diameter may have contributed to discrepancies between

the DFEM results and those from MPT in which the point source was again used.  As

before, a linear ramp source with 0.1 µs rise time was used with an amplitude of 1 N.

The results for the DFEM and MPT models for propagation along the 0° direction at

distances of 7.62 and 12.7 cm are shown in Fig. 3.  Figures 4 and 5 show similar results for

propagation along the 45° and 90° directions respectively.  As these figures show, the
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agreement is good.  Some discrepancy due to differences in reflections is observed at later

times in the waveforms.

SUMMARY AND CONCLUSIONS

Two theoretical methods for predicting flexural plate mode acoustic emission waveforms in

thin plates were compared.  The first was a dynamic finite element method (DFEM) and the

second was based on a normal mode solution to Mindlin plate theory (MPT).  Both

methods were used to calculate the response of a plate to an out of plane source on the

surface of a plate for both isotropic (aluminum) and anisotropic (unidirectional

graphite/epoxy composite) materials.  In general, good agreement between the two methods

was observed.  Discrepancies at long times in the waveforms were due to differences in the

contributions from reflections from plate edges from different specimen geometries and/or

boundary conditions for the two models.  Since the DFEM is based on exact linear

elasticity and has been previously verified by comparison with experimental measurements,

the observed differences between the two techniques at shorter times, not caused by

reflection differences, were attributed to the approximate nature of MPT.

Both methods allow calculations of waveforms in finite geometry specimens and can be

used for isotropic and anisotropic media.  However, since the DFEM is based on exact

linear elasticity, it provides the displacements from all modes, symmetric and antisymmetric,

while the MPT provides only the flexural plate mode (lowest order symmetric mode).

Other plate theories can be used for the calculation of the extensional plate modes, but

typically do not agree as well with experiment or full elasticity solutions.  The DFEM can

also be used to model arbitrary specimen geometries and source configurations, while MPT

is limited to rectangular or circular geometries and much more limited source

configurations.  However, the trade-off for the enhanced capabilities of the DFEM is the

significant computational intensity for this method.  It requires workstation class computers
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with significant memory and lengthy run times.  The normal mode solution for MPT can be

calculated on a personal computer in only a few minutes.

In discussing how these models might compare with signals generated by real AE sources

in plates, it is noted that sources with a large out-of-plane or bending component generate

preferentially large flexural plate modes.  Such sources include impact, delamination in

composites, and cracks near the surface or not symmetric with the midplane of the plate.

Since both models predict the flexural mode response, they might both be applicable.

Because of the flexibility in modeling different source configurations and geometries, the

DFEM would obviously provide more accurate models for these real sources.  However, in-

plane sources such as fatigue cracking in metals and matrix cracking produce large

extensional mode signals with little or no flexural modes if the crack is symmetric with

respect to the midplane of the plate.  For these real AE sources, MPT would not be useful as

it does not predict the extensional mode.
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Table I.  Properties of anisotropic material (unidirectional graphite/epoxy)used in DFEM
model.

ρ 1550 kg/m3

h 2.54 mm

c11 147.1 GPa

c12 4.11 GPa

c13  = c12 4.11 GPa

c23 3.09 GPa

c22 10.59 GPa

c33  = c22 10.59 GPa

c44  = 1/2(c22  - c23) 3.75 GPa

c55 5.97 GPa

c66  = c55 5.97 GPa

Table II.  Properties of anisotropic material (unidirectional graphite/epoxy) used in MPT
model.

ρ 1550 kg/m3

h 2.54 mm

D11 198.7 Pa·m3

D22 13.23 Pa·m3

D12 3.98 Pa·m3

D66 8.15 Pa·m3

A44 7.94 MPa·m

A55 12.64 MPa·m
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FIGURE CAPTIONS

Fig. 1 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for isotropic
(aluminum) material at propagation distances of (a) 7.62 cm, (b) 12.7 cm, and (c) 17.78 cm.

Fig. 2 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for isotropic
(aluminum) material at propagation distances of (a) 7.62 cm, (b) 12.7 cm, and (c) 17.78 cm
on expanded time scales.

Fig. 3 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for
anisotropic (graphite/epoxy) material along 0° direction at propagation distances of (a) 7.62
cm and (b) 12.7 cm.

Fig. 4 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for
anisotropic (graphite/epoxy) material along 45° direction at propagation distances of
(a) 7.62 cm and (b) 12.7 cm.

Fig. 5 - Comparison of DFEM (solid curve) and MPT (dashed curve) results for
anisotropic (graphite/epoxy) material along 90° direction at propagation distances of
(a) 7.62 cm and (b) 12.7 cm.
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